
A two-dimensional lattice gas model for water

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 5311

(http://iopscience.iop.org/0305-4470/20/15/042)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 20:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 20 (1987) 5311-5318. Printed in the U K  

A two-dimensional lattice gas model for water 

Dale A Huckaby and Robert S Hanna 
Department of Chemistry, Texas Christian University, Fort Worth, TX 76129, USA 

Received 29 May 1986 

Abstract. A water-like lattice gas on the square lattice is introduced. The asymmetry of 
the hydrogen bond is ignored. Molecules, pictured as having four square-planar oriented 
bonding arms, may occupy lattice sites in either of two possible orientations, + or x .  The 
bonding arms of a molecule in the + orientation point toward nearest-neighbour ( N N )  

lattice sites and the bonding arms of a molecule in the x orientation point toward 
next-nearest-neighbour ( N N N )  lattice sites. A hydrogen bond, energy P ,  < 0, occurs between 
two + oriented molecules on N N  lattice sites and a hydrogen bond, energy e2 < 0, occurs 
between two x oriented molecules on N N N  lattice sites. Two molecules on N N  sites repel 
with an energy y > 0, regardless of their relative orientations. Reflection positivity combined 
with the Peierls argument is used to prove that phase transitions to both open and 
close-packed ice phases occur in the model, 

1. Introduction 

Lattice gas models, in which a lattice site can be either vacant or occupied by a molecule 
in any one of several orientations, have been used to depict the phase behaviour of 
water for several years. A two-dimensional triangular lattice gas model that disregarded 
the asymmetry of the hydrogen bond was proposed by Bell and Lavis (1970). A 
molecule in this model, pictured as having a trigonal planar shape, was allowed to 
occupy a lattice site in either of the two orientations in which the three bonding arms 
pointed toward neighbouring lattice sites. The phase diagram for this model was 
studied using various approximations (Bell and Lavis 1970, Lavis 1973, 1975, 1976, 
Young and Lavis 1979, Southern and Lavis 1980). 

The phase behaviour of a three-dimensional model that accounts for the asymmetry 
of the hydrogen bond has also been studied numerically (Bell 1972, Fleming and Gibbs 
1974a, b, Bell and  Salt 1976, Meijer et a1 1981, Van Royen and Meijer 1984, Whitehouse 
et a /  1984). In this model, tetrahedral molecules are allowed to occupy the sites of a 
body-centred cubic lattice in any one of twelve possible orientations in which the 
hydrogen atoms and lone pairs of electrons point toward neighbouring lattice sites. A 
two-orientation version of this model, in which the asymmetry of the hydrogen bond 
is ignored, has also been proposed. The phase diagrams for the latter version have 
been calculated (Meijer et a1 1982, Lavis and Southern 1984, Van Royen and Meijer 
1986). 

A two-dimensional model that accounted for the asymmetry of the hydrogen bond 
was also studied (Lavis and Christou 1979). Molecules in the model occupy the sites 
of a square lattice in any one of four possible orientations. The two hydrogen atoms 
of a molecule always reside on adjacent bonding arms and the bonding arms of the 
molecule point toward next-nearest-neighbour lattice sites. 
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Using the Peierls argument, Heilmann and Huckaby (1979) proved that a phase 
transition to an open ice phase occurs in the two-orientation version of the water 
models on the triangular and body-centred cubic lattices. They also proved a phase 
transition to a close-packed ice phase occurs in the two-orientation water model on 
the body-centred cubic lattice. 

In the present paper, we introduce a two-dimensional square lattice gas model for 
water in which the asymmetry of the hydrogen bond is ignored. The molecules have 
four square-planar oriented bonding arms which may point either toward nearest- 
neighbour ( N N )  or toward next-nearest-neighbour ( N N N )  lattice sites. Reflection posi- 
tivity combined with the Peierls argument (Frohlich et al 1980, Huckaby and Kowalski 
1984) is used to prove that phase transitions to both open and close-packed ice-like 
phases occur in this two-dimensional model. This model is novel because the two 
close-packed structures are not symmetry related. At closest packing ( k  + C O ) ,  the 
model is equivalent to an Ising model. 

2. The model 

Consider a lattice composed of squares: 

A = { ( a ,  b ) :  a, b = 0 ,  1 , . . . ,  2 M - I }  (1) 

with coordinates (x, y )  computed modulo 2 M  onto 0 s  x, y < 2M. Molecules, each 
with four square-planar oriented bonding arms, can occupy lattice sites in either the 
+ orientation, in which the bonding arms point toward N N  sites, or in the x orientation, 
in which the bonding arms point towards N N N  sites. 

A hydrogen bond, energy E ,  < O ,  occurs between two + oriented molecules on N N  

lattice sites and a hydrogen bond, energy E > < O ,  occurs between two x oriented 
molecules on N N N  lattice sites. Two molecules on N N  sites also interact with a repulsion 
y > 0, whether they form a hydrogen bond or not. 

The grand canonical partition function for the model is given as 

E , = C  exp( -H , ( t ) /kT)  (2) 
€ 

where the Hamiltonian for a configuration 6 can be written as 

where H,,, ,  is the Hamiltonian restricted to a unit square S,  in A with a centre at  r 
and lattice sites at each vertex. For this model 

H, ,At )=- - ) (L  c ( P : + P 3 / 4 + E t  c P:P:/2+% c P:P: 
I N N  N N N  

where p is the chemical potential, i and j are different vertices of S, and 

( 5 )  

The 21 principally different types of configurations on  a square region S, are 
illustrated in figure 1. The value Hi for each of the 21 configurations on S, is given 

1 if a molecule in orientation C is at site i 
P:.'(o otherwise. 
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Figure 1. The 21 principal types of configurations about a square region S,. 

Table 1. Values, H,, of the restricted Hamiltonian H , , r  for each of the 21 possible 
configurations about a square region S, as shown in figure 1. 

i H, 

1 0 
2 ,3  - p i 4  
4 , 6  -p /2+Y/2  
5 -P/2+E2 
7 , 9  - P P  
8 -@/2+E, I2+Y/2 

10,12 -3p/4+E2+ y 
11, 14 - 3 p I 4 f y  
13 -3p /4 fs , /2+y  
15 - 3 p / 4 i s , +  y 
16 -p+2E2+2 y 
17,19 - p + E 2 + 2 y  
18 -p+E, /2+2y 
20 -p+s ,+2y  
21 -pf2E1+2y 
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in table 1. If a configuration on S ,  has a minimum value, H,, of the restricted 
Hamiltonian H,,,,, S,  will be called a 'ground-state square'. If S,  is not a ground-state 
square, then it will be called an 'excited-state square'. 

Letting A = E~ - E , ,  a consideration of table 1 shows that ground-state squares can 
have a configuration i = 5, corresponding to an  open ice structure, only if A < 7. 
Consequently, we shall henceforth consider only the case A < y. 

I f  A <  y, a consideration of table 1 shows that ground-state squares have a 
configuration i = l  if p < 2 ~ ? ,  i = 5  if 2 ~ ~ < p < 2 ( ~ , + 2 y - ] A ( ) ,  i = 1 6  if A < O  and 
p > 2 ( e 1 + 2 y - I A I )  and i = 2 1  if A > O  and p > 2 ( ~ ~ + 2 y - I A I ) .  

If p < 2 ~ ~ ,  the ground state is non-degenerate and  corresponds to the completely 
vacant lattice. If 2~~ < p < 2( + 2y  - I A I ) ,  the ground state is twofold degenerate, 
corresponding to the two symmetry-related open ice structures in which one sublattice 
is vacant and  the other is occupied by molecules in the x orientation, each molecule 
being hydrogen bonded to four other N N N  molecules. If A < 0 and p > 2( + 2 y  - I A I ) ,  
the ground state corresponds to the close-packed ice structure consisting of two 
interlocking open ice structures. If A > 0 and  p > 2( + 2y  - 1 A I), the ground state 
corresponds to the close-packed ice structure in which every site is occupied by a 
molecule in the + orientation, each molecule being hydrogen bonded to four other 
N N molecules. 

In § §  3-5, reflection positivity combined with the Peierls argument (Frohlich et a1 
1980) will be used to prove the existence of phase transitions to both open and 
close-packed ice phases in the model. 

3. Reflection positivity 

Reflection positivity has been used to prove the existence of ordered phases in a large 
number of lattice models (Frohlich et a1 1980). The development given below in § 3 
and 4 closely follows that given by Huckaby and Kowalski (1984). 

M - 1 
are defined as R ;  = { (a ,  v): y E R} and R I  = R,, ,  Reflection lines R i  are defined in 
a similar way. The lines R i  divide A into three disjoint regions: 

For a square region A as defined in equation ( l ) ,  reflection lines R,' for 0 a 

'1; = A n { (x, y ) :  M + a < x < 2 M  + a, y E R} 

'1; = A n { ( x ,  y ) :  a < x <  M +a ,   ER} ( 6 )  
'1 : = ,I n ( R U R : ). 

There is a natural involution 

e, : (x, y )  + ( 2 ~  - X, y )  ( 7 )  
which reflects the coordinates through the reflection lines R : .  I f  C: is the set of 
allowed molecular configurations on A:, and similarly for C ;  and C:, then OaCz = C,' 
and OaC: = Ct, the latter transformation being invariant. 

For any function f :  C + C, 8, f is defined as 

( e a  f 1 ( 5 1 = f [ 6, ( 5) 1 V 5 E  C. (8) 
The configuration 5 is denoted as a triple 6 = (tu, St ,  6:) where 5; E C,' and 6: E C:. 
Let F: = { f: f ( 5 )  = f ( [ : ,  [:)V( E C } .  Then 8,f(5) =f([f, lo ) i f f €  F:. A set of func- 
tions F ,  is defined in an analogous way. It can be shown that (Heilmann and Lieb 1979) 

1 J ( [ ) e a f ( 5 )  2 0  if j ' ~  F: u F, . (9) 
E t <  



A lattice gas model for water 5315 

Since the average value of a function f :  C + C is given as 

(f) = si '  C f ( 6 )  exp(-H,(S)/kT) 
€ E  C 

then equations (10) and (12) give 

<fO,f) = c G'(5)e0G'(5) 
C 

where G*([) = f([) exp(-H,'([)/kT). I f f €  F : u  F,, then equations (9) and (13) give 

( f ~ , f ) Z O  Vf E F : u  F,. (14) 

l ( fg) I2=el2f ) (@,g)  Vf E F:, g E F , .  (15 )  

It then follows by a standard Cauchy-Schwarz proof that 

This inequality will be used in $ 4  to obtain an upper bound to the probability that 
a square region S, is an excited-state square. 

4. A bound on the probability of excited-state squares 

Reflection positivity will now be used to obtain an upper bound on the probability of 
the occurrence of a set of excited-state squares. Let Q be the projection onto configur- 
ations in which S, E 9, where Y is a known subset of the possible types of excited-state 
squares, i.e. 

i f  S , E Y  
otherwise. 

Let L be any non-empty set of squares. Define 

Q ( L ) =  n Q r ( 5 ) .  
,t L 

The probability PL that L is a set of excited-state squares in Y is then bounded as 
PL s gIL', where 

Here I LI indicates the number of squares in L. 

Q * ( L )  = Q(L,'). Since Q + E  F:  and Q-E F,, equation (15) gives 
Since L = L ,  U L:, where Li = L n ( A i  U A:), then Q( L )  = Q'( L)Q-(  L ) ,  where 

(a2 (Q'e*Q')(Q-@,Q-). (19) 

Let 
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Then equation (19) becomes 

f (  Q ) f (  Q + eo Q+ ) 1 L: 11 I L y (  Q - e Q - ) I L; 11 1 L 1. (21) 
If  some L ,  maximises f (  Q), then L,  also maximises f( Q'0,Q') (proof by contra- 

diction). Hence if r e  L,, then Bar€ L ,  as well. However, since this is true for all 6 
defined as a reflection through any pair of lines R i ,  R ; ,  then L, contains all the 
squares in A.  Hence 1 L ,  I = 4M2. 

Let Ho be the value of the Hamiltonian restricted to a ground-state square. Let 
H, be the smallest value of the Hamiltonian for an excited-state square in 9'. Then 

where the factor 34MZ is the maximum number of configurations in the model. Since 
4M2Ho is the Hamiltonian for a ground-state configuration, then E,,> 
exp(-4MZHo/kT).  Thus 

g s ( 3 " * [ e ~ p ( - H , / k T ) ] ~ ~ ~ E ; ' } ' / ~ ~ ~  (22) 

g 6 3 exp( -a/ kT) (23) 
where a = H, - Ho. This bound will be used in 0 5 to aid in proving the existence of 
multiple equilibrium states in the model. 

5. Phase transitions to open and close-packed ice phases 

We shall use the notion (Frohlich 1978) that a phase transition occurs if the number 
of equilibrium states is not constant in temperature. Since the present model has finite 
short-range interactions, the equilibrium state is unique at sufficiently high temperatures 
(Dobrushin 1968). If it can be shown that multiple equilibrium states are associated 
with both the open and close-packed ice phases at low temperatures, then the existence 
of a phase transition to each of these phases will have been established. 

To establish the existence of multiple equilibrium states, we shall prove that 
long-range order occurs at low temperatures in both the open and close-packed ice 
phases. Let 

if S, belongs to a ground-state configuration m on A 
otherwise. (24) P? = 

Long-range order is said to occur if, for two configurations m and n, 

lim 1A1-2 ((P?P:.)-(P;)(P:.))#O. (25) 
l i\l-cC r,r'c 2 

We shall first show that ( P ;  P:.) + 0 as T + 0, if m is a ground-state configuration on 
A, and n does not belong to configuration m at S, , .  We then show that, for a suitable 
choice of n, (P; ) (P: , )  is finite as T+O, independent of r', proving the existence of 
long-range order at low temperature. 

We shall now define what we shall mean by a contour in a configuration. If an 
excited-state square and a ground-state square share an edge, then that edge is said 
to be a 'contour segment'. Two contour segments are connected if they share a common 
vertex and also divide the four squares at that vertex into two sets, one of which 
contains only ground-state squares. This prevents the branching of contours. 

If S,  is a ground-state square belonging to a ground-state configuration m, and S, . ,  
r ' f  r arbitrary, is not a ground-state square belonging to m, then either r or r' is 
surrounded by a closed contour y of length Iyl. which borders ground-state squares 
on the side containing r. 
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An examination of figure 1 shows that ground-state squares belonging to different 
ground states cannot share a common vertex. Thus an excited-state square can have 
at  most two contour segments as edges. The contour y thus borders a fixed set of 
N 2 I y 1/2 excited-state squares. 

There are less than 3Iy '  contours of length I y 1 which begin at a certain site. All of 
the contours surrounding either r or r' can start at either one of the I y / /2  sites in a 
straight line from S, or at one of the I y ) / 2  sites in a straight line from S,.. (Contours 
that are not homotopic to a point have a vanishing probability in the thermodynamic 
limit and  are not considered in the above argument.) 

Hence, if m is a ground-state configuration, and n does not belong to configuration 
m at S,., then 

For the case of open ice, we let m and n correspond to the two structures composed 
only of squares of type i = 5 .  As indicated in § 2, if 2~~ < p < 2( E ,  + 2 y  - I A I), these 
two structures are the two ground-state configurations. Let the set Y of 5 4 contain 
all possible types of excited-state squares. Equation (26) then ensures (Py P:.) + 0 as 
T+0.  

At sufficiently low temperatures, (Py) + ( P : )  > 1 - g. By symmetry, (Py) = (P:). 
Hence (PT)(P:.)> a-g/2.  Hence, at sufficiently low temperature there are multiple 
equilibrium states corresponding to open ice if 2~~ < p < 2( E ,  + 2y - / A  I). 

For the case of close-packed ice, we shall use an  argument given by Frohlich et a1 
(1980). Let m correspond to the structure composed entirely of squares of type i = 16 
and let n correspond to the structure composed entirely of squares of type i = 21. If 
p > 2( E ,  + 2 y  - I A I), m is the ground-state structure if A < 0 and n is the ground-state 
structure if A >  0. 

Let Y (see Q 4) be the set of all excited-state squares, except those of type i = 16 
or i = 21. Let H ,  be the minimum value of the restricted Hamiltonian for a square in 
9. A consideration of table 1 ensures that if p > 4y, H, - Ho = max(-e, ,  - E ~ ) .  Let 
A E [ -a ,  a ]  where a > 0. Since only squares in Y can share an edge with a ground-state 
square, then (Py P:.) + 0 as T +  0, uniformly on [ -a ,  a ] .  Also, if configuration I does 
not correspond to configuration m or n at S,, (P:)+ 0 as T + 0, uniformly on [-a, a ] .  

If we now let Y be the set of all excited-state squares, then by the development of 
§ 4 ,  if A = - a ,  ( P : ) + O  as T - 0 .  I f  A = a ,  ( P y ) + O  as T+0.  We now vary A from - a  
to a for a fixed low temperature. Either ( P : )  varies continuously, in which case there 
is a range of A for which (P:) > i and (Py) > i ,  or else (P:) varies discontinuously, in 
which case there is at least one value of A for which ( P : ) > i  and ( P y ) > i .  Hence, 
there are multiple equilibrium states corresponding to close-packed ice. 

In the limit of closest packing (p+co) ,  p ?  of equation (5) can be written as 
p := ( l+S , ) /2 ,p := ( l  -S,)/2,whereS, = + 1  (S, = -1)ifsiteiisoccupiedbyamolecule 
in the + ( x )  orientation. The Hamiltonian then becomes the Ising Hamiltonian 

H . 2 ( 5 ) = K + ( ~ 1 / 4 )  C s , s , + ( ~ 2 / 4 )  S,s,-A C S, (27) 
N N  N N N  I €  h 

where K is a constant. The Lee-Yang circle theorem (Lee and Yang 1952) ensures 
there are no phase transitions if A # 0. If A = 0, the Peierls argument proves there are 
multiple equilibrium states at low temperature, establishing the existence of a phase 
transition at  A = O  in the limit p +CO. 
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